A Study on a Bionic Pattern Classifier Based on Olfactory Neural System

نویسندگان

  • Xu Li
  • Guang Li
  • Le Wang
  • Walter J. Freeman
چکیده

This paper presents a simulation of a biological olfactory neural system with a KIII set, which is a high-dimensional chaotic neural network. The KIII set differs from conventional artificial neural networks by use of chaotic attractors for memory locations that are accessed by, chaotic trajectories. It was designed to simulate the patterns of action potentials and EEG waveforms observed in electrophysiological experiments, and has proved its utility as a model for biological intelligence in pattern classification. An application to recognition of handwritten numerals is presented here, in which the classification performance of the KIII network under different noise levels was investigated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tea Classification Based on Artificial Olfaction Using Bionic Olfactory Neural Network

Based on the research on mechanism of biological olfactory system, we constructed a K-set, which is a novel bionic neural network. Founded on the groundwork of K0, KI and KII sets, the KIII set in the K-set hierarchy simulates the whole olfactory neural system. In contrast to the conventional artificial neural networks, the KIII set operates in nonconvergent ‘chaotic’ dynamical modes similar to...

متن کامل

Developing A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults

Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...

متن کامل

A Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection

Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...

متن کامل

Prosthetic Hand Control

This paper presents a five-fingered underactuated prosthetic hand controlled by surface electromyographic (EMG) signals. The prosthetic hand control part is based on an EMG motion pattern classifier which combines variable learning rate (VLR) based neural network with parametric Autoregressive (AR) model and wavelet transform. This motion pattern classifier can successfully identify flexion and...

متن کامل

A Bionic Neural Network for Fish-Robot Locomotion

A bionic neural network for fish-robot locomotion is presented. The bionic neural network inspired from fish neural network consists of one high level controller and one chain of central pattern generators (CPGs). Each CPG contains a nonlinear neural Zhang oscillator which shows properties similar to sine-cosine model. Simulation results show that the bionic neural network presents a good perfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2006